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The CMS Detector
(Barrel)
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• More than 5 fb-1 data collected @ 7 TeV• Peak lumi 3.5x1033 cm-2s-1• Data taking efficiency: 90%• Data certified for analysis: 90%• Mean pileup: 10

Excellent Performance

• Aim to reco. EVERY particle in event

• Exploit detector redundancy, 

whilst avoiding double counting

• Provides global event description

• via list of individual particles

• Huge improvements to τ, jets, & MET

• Improvements to isolation, PU subt.

Particle Flow in CMS
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• Short-lived neutral hadrons, “V0’s” : ~5%

• K0
S → π+π-, Λ → π-p, …, but also γ conversions, and (more 

problematic) nuclear interactions in the detector material.

• Full use of Detector Information significantly improves physics 
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Particle Flow Algorthm 

HCAL
Clusters

ECAL
Clusters

Tracks

First Associate Hits within Each Detector
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Then Link Across Detectors
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Particle Flow Algorthm 

HCAL
Clusters

ECAL
Clusters

Tracks

neutral hadron 

Charged
Hadrons

Electron

E(ECAL,HCAL) > Ptracks

Finally Apply Particle ID & Separation
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“Clean” the Event During Reconstruction!
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Very Basic View of Particle Flow

• Find and “remove” muons (σtrack)

• Find and “remove” electrons ( min[σtrack, σECAL] )

• Find and “remove” converted photons ( min[σtrack, σECAL] )

• Find and “remove” charged hadrons (σtrack)

• Find and “remove” V0’s (σtrack)

• Find and “remove” photons (σECAL)

• Left with neutral hadrons (10%) (σHCAL + fake)

• Use above list of Reconstructed Particles to describe the 
entire event!

“Clean” the Event During Reconstruction!
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• ud -> W+ ; du -> W-

• 1st quark from valence
• 2nd quark from sea

• pp collider: more W+ then W-

W Charge Asymmetry

1

In pp collisions, W bosons are produced primarily via the processes ud̄ ! W+ and dū ! W�.
The first quark is a valence quark from one of the protons, and the second one is a sea anti-
quark from the other proton. Due to the presence of two valence u quarks in the proton, there
is an overall excess of W+ over W� bosons. The ratio of inclusive cross sections for W+ and
W� bosons production at the Large Hadron Collider (LHC) was measured to be 1.42 ± 0.03
by the Compact Muon Solenoid (CMS) experiment [1] and is in agreement with predictions of
the Standard Model (SM) based on various parton distribution functions (PDFs) [2, 3]. Mea-
surement of this production asymmetry between W+ and W� bosons as a function of boson
rapidity can provide better constraints on the u/d ratio and the sea antiquark densities in the
ranges of the Björken parameter x [4] probed in pp collisions at

p
s = 7 TeV. However, due to

the presence of neutrinos in leptonic W decays the boson rapidity is not directly accessible. The
experimentally accessible quantity is the lepton charge asymmetry, defined to be

A(h) =
ds/dh(W+ ! `+n)� ds/dh(W� ! `�n̄)
ds/dh(W+ ! `+n) + ds/dh(W� ! `�n̄)

,

where ` is the daughter charged lepton, h is the charged lepton pseudorapidity in the CMS lab
frame (h = � ln [tan ( q

2 )] where q is the polar angle), and ds/dh is the differential cross section
for charged leptons from W boson decays. The lepton charge asymmetry can be used to test
SM predictions with high precision.

The lepton charge asymmetry and the W charge asymmetry have been studied in pp̄ collisions
by both the CDF and D0 experiments at the Fermilab Tevatron Collider [5, 6]. ATLAS and
CMS experiments have reported measurements of the lepton charge asymmetry at the LHC re-
cently using the data collected during the 2010 LHC runs [7, 8]. CMS also reported an updated
measurement of the muon charge asymmetry using a dataset corresponding to an integrated
luminosity of 234 pb�1 including the full 2010 dataset and part of the 2011 dataset [9]. In this
paper we present an update of the measurement of the electron charge asymmetry in inclusive
pp ! W(en) + X production at

p
s = 7 TeV with a data sample corresponding to 840 pb�1

collected in Spring 2011. With respect to the analysis performed in 2010 [8] the threshold on the
electron transverse momentum is increased from 25 to 35 GeV to match the updated trigger
threshold for single electrons. The data sample is ⇠ 25 times larger than in 2010 and allows
a reduction of many systematic uncertainties which were previously limited by the smaller
amount of data.

A detailed description of the CMS experiment can be found elsewhere [10]. The central fea-
ture of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, 13 m in
length, providing an axial field of 3.8 T. Within the field volume are the silicon pixel and strip
tracker, the crystal electromagnetic calorimeter (ECAL) and the brass/scintillator hadron calor-
imeter (HCAL). Muons are measured in gas-ionization detectors embedded in the steel return
yoke of the solenoid. The most relevant sub-detectors for this measurement are the ECAL and
the tracking system. The electromagnetic calorimeter consists of nearly 76 000 lead tungstate
crystals which provide coverage in pseudorapidity |h| < 1.479 in the barrel region and 1.479
< |h| < 3.0 in two endcap regions. A preshower detector consisting of two planes of silicon
sensors interleaved with a total of 3 X0 of lead is located in front of the ECAL endcaps. The
electron energy resolution is 3% or better for the range of electron energies relevant for this
analysis. CMS uses a right-handed coordinate system, with the origin at the nominal interac-
tion point, the x-axis pointing to the center of the LHC, the y-axis pointing up (perpendicular
to the LHC plane), and the z-axis along the anticlockwise-beam direction. The polar angle, q, is
measured from the positive z-axis and the azimuthal angle, f, is measured in the x-y plane.
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Figure 1: Signal fit to data E/T distributions for electrons. Results for the first pseudorapidity
bin (|h| < 0.2) and for the 10th pseudorapidity bin (2.0< |h| < 2.2) are shown. The hatched
area represents the statistical and systematic uncertainties associated to the fitting procedure.

and the statistical errors on the efficiency ratios are treated as systematic uncertainties. This is
the dominant systematic uncertainty in all the pseudorapidity bins.

The true charge asymmetry, A, is diluted due to charge misidentification resulting in an ob-
served asymmetry, Aobs = A(1� 2w). The electron charge misidentification rate w is measured
in data using Z/g⇤ ! e+e� evens. The observed electron charge asymmetry is corrected for
the charge misidentification rate as a function of |h|. The statistical error on the electron charge
misidentification rate is taken as the systematic uncertainty.

Table 1 summarizes systematic uncertainties in all the electron pseudorapidity bins. The full
covariance systematic errors matrix is given in Table 2. The measured charge asymmetry re-
sults are summarized in Table 3 with both statistical and systematic uncertainties shown. The
statistical uncertanties in the various pseudorapidity bins are uncorrelated.
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using the PDF reweighting technique and corresponds to 68% of confidence level.
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• SM Prediction: Br = (3
.2±0.2)x10

-9

• B+    J/ψK+ N
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• Blind analysis

• p-value for B
 hypothesis:   
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• p-value for S+
B hypothesis: 

0.71

Bs -> μμ

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH11020
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• Multijets: fit MET spectrum 

with template from lepton 
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The two measurements are compatibile, taking into account correlated and uncorrelated un-
certainties. The latter category includes the uncertainties on the W+heavy flavours extraction,
on the QCD extraction procedure, on the lepton reconstruction and trigger efficiencies, and on
the hadronic part of the trigger.

The combination of the muon and electron measurement gives:

st�ch. = 70.2 ± 5.2(stat.) ± 10.4(syst.)± 3.4(lumi.) pb (combined)

Figure 5 shows the comparison of the current measurement with the Standard Model expecta-
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measurement with the dedicated t-channel cross section measurements at Tevatron [21, 22] and
with the QCD expectations computed at NLO with MCFM in the 5-flavour scheme [23] and at
NLO+NNLL [1]. The error band (width of the curve) is obtained by varying the top mass
within its current uncertainty [24], estimating the PDF uncertainty according to the HEPDATA
recommendations [25], and varying the factorization and renormalization scales coherently by
a factor two up and down.

The absolute value of the CKM element |Vtb| is determined (similar to [2]) assuming that |Vtd|
and |Vts| are much smaller than |Vtb|, resulting in:

|Vtb| =
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where sth
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12 6 Results

Systematic check Fitting F0, FL and Ftt Fitting F0 and Ftt
3D fit 2D fit

± Uncertainty F0 ± Uncertainty FL ± Uncertainty F0

b-Tag (
eDATA

b�tag

eMC
b�tag

) 0.007 0.009 0.010

QCD Norm 0.007 0.002 0.003
Single-t Norm 0.003 0.007 0.010
DY Norm 0.018 0.003 0.010
W+jet Norm 0.020 0.006 0.029

muon (no eDATA
µ

eMC
µ

) 0.002 0.003 0.003
PDF 0.001 0.001 0.002
JES scale 0.018 0.011 0.005
top Q2 scale 0.014 0.007 0.021
DY,W Q2 scale 0.022 0.003 0.014
top mass (±3 GeV/c2) 0.019 0.021 0.025

Table 2: Summary of the systematic uncertainties, on the 3D fit analysis, fitting F0, FL and Ftt
(columns 2-3) and on the 2D fit analysis, fitting F0 and Ftt only (column 4). The numbers given
correspond to the absolute uncertainty with respect to the central analysis: (Fcentral � Fcheck).

6 Results
6.1 Helicity Fractions

The measurement of the W helicity fractions in semileptonic top pairs using fits to the cos(q⇤)
distribution yields:

F0 = 0.567 ± 0.074(stat.)± 0.047(syst.)
FL = 0.393 ± 0.045(stat.)± 0.029(syst.),

if the F0 and FL are fitted at the same time. The measurements are correlated, with a correlation
factor -0.94. The large correlation is due to the small value of FR preferred by the data. If we
change variables and use F0, FL � FR instead as fit parameters, the correlation is �33.5%.

The third fraction is fixed by the condition F0 + FR + FL = 1, giving:

FR = 0.040 ± 0.035 (stat.)± 0.044(syst.).

If the constraint FR = 0 is imposed on the fit, fitting only F0 yields:

F0 = 0.643 ± 0.034(stat.)± 0.050(syst.)

or, equivalently (FL = 1 � F0 for FR = 0):

FL = 0.357 ± 0.034 (stat.)± 0.050(syst.).

The two types of fits provide consistent measured fractions. All results are in agreement with
the predictions from the standard model.
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• MH < 169 GeV @ 95% CL (standard fit)
• MH < 143 GeV @ 95% CL (before LHC)

Indirect searches
• LEP: MH > 114.4 GeV at 95% CL
• Tevatron: MH < 147 GeV at 95% CL

Direct searches

SM Higgs favoured at low mass, above the LEP limit

ggH VBFVH

Production Decay
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• Signature:  small mass peak over large smoothly decreasing background• Irreducible: 2γ QCD production• Reducible: γ+jet with additional fake γ, DY with e’s faking γ’s• Studied mass range: 110-150 GeV

H to γγ

• Small BR: ~2x10
-3

• Two isolated high pT photons

• VBF channe
l has two jets from

 quarks

• Narrow mass peak

• very good mass resolution 1-2%

H to γγ



16.03.2012

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

HIGGS

21

13

)2 (GeV/cγγm
100 120 140 160 180

 )2
Ev

en
ts

 / 
( 1

 G
eV

/c

0
2
4
6
8

10
12
14
16
18
20
22
24

Data
Bkg Model

σ1 ±

σ2 ±

=120 GeVH1xSM m

-1 = 7 TeV L = 4.76 fbs
CMS preliminary

BDT >= 0.89

)2 (GeV/cγγm
100 120 140 160 180

 )2
Ev

en
ts

 / 
( 1

 G
eV

/c

0

20

40

60

80

100

120

140

160
Data
Bkg Model

σ1 ±

σ2 ±

=120 GeVH1xSM m

-1 = 7 TeV L = 4.76 fbs
CMS preliminary

0.72 <= BDT < 0.89

)2 (GeV/cγγm
100 120 140 160 180

 )2
Ev

en
ts

 / 
( 1

 G
eV

/c

0

50

100

150

200

250 Data
Bkg Model

σ1 ±

σ2 ±

=120 GeVH1xSM m

-1 = 7 TeV L = 4.76 fbs
CMS preliminary

0.55 <= BDT < 0.72

)2 (GeV/cγγm
100 120 140 160 180

 )2
Ev

en
ts

 / 
( 1

 G
eV

/c

0

100

200

300

400

500

600

700 Data
Bkg Model

σ1 ±

σ2 ±

=120 GeVH1xSM m

-1 = 7 TeV L = 4.76 fbs
CMS preliminary

0.05 <= BDT < 0.55

)2 (GeV/cγγm
100 120 140 160 180

 )2
Ev

en
ts

 / 
( 1

 G
eV

/c

0
2
4
6
8

10
12

14
16
18 Data

Bkg Model
σ1 ±

σ2 ±

=120 GeVH1xSM m

-1 = 7 TeV L = 4.76 fbs
CMS preliminary

BDT >= 0.05 VBF Tag

)2 (GeV/cγγm
100 120 140 160 180

 )2
Ev

en
ts

 / 
( 1

 G
eV

/c

0

200

400

600

800

1000
Data
Bkg Model

σ1 ±

σ2 ±

=120 GeVH1xSM m

-1 = 7 TeV L = 4.76 fbs
CMS preliminary

All Categories Combined

Figure 1: Background model fit to the mgg distribution for the five event classes, together with
a simulated signal (mH=120 GeV). The magnitude of the simulated signal is what would be
expected if its cross section agreed the SM expectation. The sum of the event classes together
with the sum of the five fits is also shown.

• MVA analysis, inputs ver
y similar to 

published cut & count analysis

• HIG-11-033, arXiv:1202.14
87

• Goal: optimise use of high quality
 

events
• exploit detector perf. and kinematics

• MVA based Photon ID and 

MVA based diphoton event classific
ation

• Four non-VBF classes, ba
sed on MVA 

output

• One VBF class with dijet tagged events

• lower cut on diphoton event class.

Main Update
HIG-12-001
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Figure 1: Background model fit to the mgg distribution for the five event classes, together with
a simulated signal (mH=120 GeV). The magnitude of the simulated signal is what would be
expected if its cross section agreed the SM expectation. The sum of the event classes together
with the sum of the five fits is also shown.

• MVA analysis, inputs ver
y similar to 

published cut & count analysis

• HIG-11-033, arXiv:1202.14
87

• Goal: optimise use of high quality
 

events
• exploit detector perf. and kinematics

• MVA based Photon ID and 

MVA based diphoton event classific
ation

• Four non-VBF classes, ba
sed on MVA 

output

• One VBF class with dijet tagged events

• lower cut on diphoton event class.

Main Update

• polynomial (3rd to 5th order) fit to 
data

• Bias 
• measured with MC toys• found to be less than 20%

• Cross check• sliding window background model
• yields consistent with limits

Background Modelling

HIG-12-001

NE
W!
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HIG-12-001 expected

• Expected 95% CL exclusion

• 1.2 to 2.0 x SM

• Excluded at 95% CL

• [110.0, 111.0]

• [117.5, 120.5]

• [128.5, 132.0]

• [139.0, 140.0]

• [146.0, 147.0]

• Cut based analysis consistent re
sults

• Cross check MVA also consistent

Exclusion Limits

• Largest excess at 125 GeV• Global significance 1.6σ 

Results

NE
W!

HIG-11-033 expected

HIG-12-001
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tt

electroweak
multijets

=120Hm

• No narr
ow mass pea

k: σ(m) ≈ 20%

• Also im
portant

 for MSSM

• Three different
 sub-ch

annels:

• VBF pro
duction: 

2 forward jets

• Boosted
: one je

t pT > 150 G
eV

• gg-fusi
on: 0 o

r 1 additional 
jets

Low mass: H t
o ττ

arXiv:1202.4083 HIG-11-029
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• H -> ττ -> μμ:  (HIG-12-007)• large bkg from Z->μμ• WH -> lττ -> eμτ, μμτ: (HIG-12-006)• also sensitive to WH -> WWW• use same sign eμ, μμ

Two new channels added

NEW!
NEW!

HIG
-12-

007

HIG
-12

-00
6

H -> ττ -> μμ WH -> lττ -> eμμ,μμτ
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• Most sensitive channel around 2xMw• No Narrow mass peak: σ(m) ≈ 20%• Two high pT isolated leptons+MET• Main backgrounds• WW (irreducible)• Z+jets, WZ, ZZ, tt, W+jets

H -> WW -> 2l2ν

arXiv:1202.1489 HIG-11-024
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• Most sensitive channel around 2xMw• No Narrow mass peak: σ(m) ≈ 20%• Two high pT isolated leptons+MET• Main backgrounds• WW (irreducible)• Z+jets, WZ, ZZ, tt, W+jets

H -> WW -> 2l2ν pT(μ) = 
32 GeV pT(e) = 

  34 GeV

   MET = 
47 GeV
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• Most sensitive channel around 2xMw• No Narrow mass peak: σ(m) ≈ 20%• Two high pT isolated leptons+MET• Main backgrounds• WW (irreducible)• Z+jets, WZ, ZZ, tt, W+jets

H -> WW -> 2l2ν pT(μ) = 
32 GeV pT(e) = 

  34 GeV

   MET = 
47 GeV

• Background estimation crucial

• Main bkgs estimated from data

• Analysis perf
ormed in

• 0,1,2 jet multiplicity bin
s

• ee, μμ, eμ fla
vour bins

• Cut & count as well as MVA

• Optimised as a functio
n of Mh

• Lepton trigg
er and ID down to 10 GeV

Analysis
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• Similar to WW analysis

• Cut & count with mass independent 

selection

• Main backgrounds estimated from 

data

WH -> WWW -> 3l3ν
HIG-11-034

NEW!
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NEW!

• Expected : [114.5, 543]

• Observed : [127.5, 600
]

Combination : Li
mit

HIG-11-008
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NE
W!

• Small excess in all high 
sensitivity modes at low 

masses

Combination : Limit

HIG
-11

-00
8
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NEW!

• Minimum pValue 
observed

 @ 125 GeV

• Global sig
nificanc

e

• 2.1σ [110
, 145]

• 0.8σ [11
0, 600]

• Local sig
nificanc

e consist
ent with SM

• Best fit 
cross-sec

tion ≈ SM
 value

Combination
 : pValue

s

HIG-11-008

NEW!
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• Higgs B
oson s

earch i
n 11 in

dependent 

channe
ls

• Expect
ed 95% CL exclu

sion:

• M(h) in 
[113.5,

 543] GeV

• Observ
ed 95% CL exclu

sion

• M(h) in 
[127.5, 

600] G
eV

• If the 
SM Higgs 

exists, 
at 95%

 CL then

• M(h) in 
[114.5, 127.

5] GeV

Summary & Outlo
ok

• Observe an excess around 125 GeV.

• Significance: Local 2.8σ, Global 

0.8σ [110, 600] & 2.1σ [110, 145]

• Excess consistent with 
• a background fluctuation

• a SM Higgs Boson near 125 GeV mass

• More data needed to investigate origin 

• 2012 LHC will run at 8 TeV
• should be able to discover or exclude 

the SM Higgs Boson

Summary & Outlook
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Nima Arkni-Hamid
Implications of LHC Workshop
31 October, CERN

Also R. Barbieri, A. Weiler, etc, etc
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CERN
23/3/11 G. Dissertori :CMS Status Report

The strategy

Focus on signatures (topologies), use different approaches/observables
alpha_T, “Razor”, HT, MHT, ...

Established many different techniques to derive backgrounds
jet smearing and re-balancing, ABCD, fakeable-object technique to estimate fake 
lepton rates, generic properties of lepton pT spectra, generic properties of falling 
SM spectra

Different trigger paths (all hadronic HT-based, leptonic)
Not necessarily optimized for best excl. limits, but sharpened tools for discovery!
cross check, cross check, cross check....

29

SM backgroundsLarge Low

sensitivity to strongly produced SUSY sensitivity to 
gauge-mediated SUSY

• Focus on signatures (topologies), use different approaches/
observables
• alpha_T, “Razor”, HT, MHT, ...

• Established many different techniques to derive backgrounds
• jet smearing & rebalancing, ABCD, fakeable-object technique to 

estimate fake lepton rates, generic properties of lepton pT 
spectra, generic properties of SM spectra

• Cross check, cross check, cross check...

The Strategy

SM backgrounds

Sensitivity to strongly produced SUSY

Large Small
sensitivity to 

gauge-mediated SUSY 
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• Both R2 & MR observed to fall 
exponentially

• Background strategy
• fit exponential to data in Control 

Regions
• extrapolate into Signal Regions
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• Both R 2 & M
R observed to fall 

exponentially

• Background strategy

• fit exponential to data in Control 

Regions
• extrapolate into Signal Regions

Search with Razor
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• Two data-driven methods• Cut & count:
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• Search for kinematic edge in m(ll)
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• Two data-driven methods
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FIG. 1: Natural electroweak symmetry breaking constrains the superpartners on the left to be

light. Meanwhile, the superpartners on the right can be heavy, M � 1 TeV, without spoiling

naturalness. In this paper, we focus on determining how the LHC data constrains the masses of

the superpartners on the left.

the main points, necessary for the discussions of the following sections. In doing so, we will

try to keep the discussion as general as possible, without committing to the specific Higgs

potential of the MSSM. We do specialize the discussion to 4D theories because some aspects

of fine tuning can be modified in higher dimensional setups.

In a natural theory of EWSB the various contributions to the quadratic terms of the Higgs

potential should be comparable in size and of the order of the electroweak scale v ⇠ 246 GeV.

The relevant terms are actually those determining the curvature of the potential in the

direction of the Higgs vacuum expectation value. Therefore the discussion of naturalness
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TL ratio: RTL =
leptons passing analysis selection

leptons passing loose selection

Measure RTL in independent
QCD dominated Control Sample 
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• Similar to SS dilepton analysis: 
just add 2 b-tagged jets

• Fake lepton background from b’s 
dramatically smaller!

• top contribution expected to 
decrease by factor of 2!

• More exclusive search
• Same-sign top production
• SUSY 4 top final states
• SUSY sbottom pair production
• SUSY 4b4W final states

SS Dileptons + 2b-jets
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Developing new search strategies for compressed spectra...
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• two selections:

• γ + 2 jets +
 MET > 100 GeV

• γγ + 1 jet +
 MET >  50 GeV

photons
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value of R in data. Also shown in Fig. 2 are the expectations for an excited quark of mass 1.0,
1.5, and 2.5 TeV.

In Fig. 3 we show the difference between the data and the offset QCD predictions, divided by
the statistical uncertainty on the data. With respect to a flat line at zero, this distribution has a
c2/ndf of 41/39.
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Figure 2: Dijet angular ratio from 2.2 fb�1 of integrated luminosity. The ratio is compared
to predictions for PYTHIA QCD (red curve) normalized to the mass region 500-600 GeV (blue
lines) and excited quark resonances with masses of 1.0, 2.5 and 2.5 TeV.
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Figure 3: (Left) The data minus background divided by data statistical uncertainty of the mea-
sured dijet angular ratio. The fit to a flat line at zero is shown. (Right) The difference between
the data and the QCD predictions, normalized by its statistical uncertainty.

NEW!

500 1000 1500 2000 2500

-610

-510

-410

M [GeV]

σ
R

median expected
68% expected
95% expected

SSMZ'
ΨZ'

=0.1PlM k/KKG
=0.05PlM k/KKG

 = 0.02∈ StuZ'
 = 0.03∈ StuZ'
 = 0.04∈ StuZ'
 = 0.05∈ StuZ'
 = 0.06∈ StuZ'

95% C.L. limit

CMS preliminary )-1(4.9fb-µ+µ)+-1ee(4.7fb

NEW!• Bump hunting in the 
DY tail
• No QCD; Very clean
• Sequential SM Z’ < 

2.3 TeV excluded

Dilepton Resonances

• Bump hunting in 
the 

dijet tail

• Central vs for
ward 

dijet events &
 

versus dijet mass

• excited quarks < 

3.2 TeV exclu
ded

Dijet Resonances

EXO
-11-

019

EXO
-11-

026



16.03.2012

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

Exotic High Mass Resonances

45

) [GeV]-µ+µm(
200 400 600 800 1000 1200 1400

 E
ve

nt
s 

/ 5
 G

eV

-310

-210

-110

1

10

210

310

410

510

DATA

-µ+µ→*γZ/

 + other prompt leptonstt

jets

-1 L dt = 4.9 fb∫ = 7 TeV    sCMS preliminary   

NEW!

3

value of R in data. Also shown in Fig. 2 are the expectations for an excited quark of mass 1.0,
1.5, and 2.5 TeV.

In Fig. 3 we show the difference between the data and the offset QCD predictions, divided by
the statistical uncertainty on the data. With respect to a flat line at zero, this distribution has a
c2/ndf of 41/39.

 Dijet Mass (GeV)
1000 2000 3000 4000 5000

|<
3.

0)
η

Δ
|<

1.
3)

/N
(1

.3
<|

η
Δ

 N
(| 0

0.05

0.1

0.15

0.2

0.25

0.3

CMS Preliminary
-1CMS 2.2 fb

PYTHIA QCD
Q* 1.0TeV
Q* 1.5TeV
Q* 2.5TeV

 Dijet Mass (GeV)
1000 2000 3000 4000 5000

|<
3.

0)
η

Δ
|<

1.
3)

/N
(1

.3
<|

η
Δ

 N
(| 0

0.05

0.1

0.15

0.2

0.25

0.3

CMS Preliminary
-1CMS 2.2 fb

PYTHIA QCD
Q* 1.0TeV
Q* 1.5TeV
Q* 2.5TeV

Figure 2: Dijet angular ratio from 2.2 fb�1 of integrated luminosity. The ratio is compared
to predictions for PYTHIA QCD (red curve) normalized to the mass region 500-600 GeV (blue
lines) and excited quark resonances with masses of 1.0, 2.5 and 2.5 TeV.

 Dijet Mass (GeV)
1000 2000 3000 4000 5000 6000

 D
at

a-
B

ac
kg

ro
un

d/
St

at
is

tic
al

 E
rr

or

-4

-3

-2

-1

0

1

2

3

-1CMS Preliminary 2.2 fb
/ndf  =  40.9/392χ

Data-Background/Statistical Error
-10 -8 -6 -4 -2 0 2 4 6 8 10

 C
ou

nt
s

0

1

2

3

4

5

6

7

8

9

mean = -0.25
 =  1.04σ

-1CMS Preliminary 2.2 fb

Figure 3: (Left) The data minus background divided by data statistical uncertainty of the mea-
sured dijet angular ratio. The fit to a flat line at zero is shown. (Right) The difference between
the data and the QCD predictions, normalized by its statistical uncertainty.

NEW!

5

 Resonance Mass (TeV)
1 1.5 2 2.5 3 3.5 4

 x
 A

 x
 B

r (
pb

)
σ 

-210

-110

1

10

CMS Preliminary
=7 TeVs, -12.2 fb

Observed Limit (95% CL)

Expected Limit

σ 1±Expected

σ 2±Expected

Excited Quark

Figure 4: The observed 95% confidence level upper limits on s⇥Acceptance ⇥ Branching Frac-
tion for quark-gluon resonances with spin- 1

2 (solid curve) and the expected limits (dashed
curve) with their statistical and systematic variations at the 1s and 2s levels (shaded bands)
are compared to the theory prediction for excited quarks (red dashed curve).

6 Conclusion

We present here the first results from the CMS experiment searching for resonances using the
dijet angular ratio of inner events (|Dh| < 1.3) to outer events (1.3 < |Dh| < 3.0). We use a
data sample corresponding to 2.2± 0.2 fb�1 of integrated luminosity from 7 TeV proton-proton
collisions at the LHC. The dijet angular ratio observed in data agrees with the background
expectation and there is no evidence for dijet resonances. We exclude an excited quark of mass
less than 3.20 TeV at 95% C.L., where the expected limit is 2.85 TeV. This limit can be compared
to the published limits with 1 fb�1 from CMS[3] (2.68 TeV expected, 2.49 TeV observed) and
ATLAS[4] (2.81 TeV expected, 2.99 TeV observed).
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Figure 14: Event display of a “golden” triply-tagged “1 + 2” candidate. In addition to the
analysis selection, an additional b tagging requirement is made on the candidate b jet in the
“type 2” hemisphere. Here, the yellow corresponds to the particle flow candidates of the “type
1” hemisphere jets, and the green corresponds to the particle flow candidates of the “type 2”
hemisphere jets. The height of the line is the energy measured by the particle flow algorithm
for the various particles. The lines are charged and neutral particles. The electromagnetic
calorimeter information is shown in red, and the hadronic calorimieter information is shown
in blue.
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Figure 1: The rTC (and aTC) production in pp collisions at the LHC occurs primarily through
quark annihilation into an intermediate W⇤ boson.

tem is composed of a pixel detector with three barrel layers at radii between 4.4 and 10.2 cm
and a silicon strip tracker with 10 barrel detection layers extending outwards to a radius of
1.1 m. Each system is completed by two end caps, extending the acceptance up to |h| < 2.5.
A lead tungstate crystal electromagnetic calorimeter with fine transverse (Dh, Df) granular-
ity and a brass-scintillator hadronic calorimeter surround the tracking volume and cover the
region |h| < 3. The steel return yoke outside the solenoid is in turn instrumented with gas
detectors which are used to identify muons in the range |h| < 2.4. The barrel region is covered
by drift tube chambers and the end cap region by cathode strip chambers, each complemented
by resistive plate chambers.

3 Signal and Background Modeling

The signal and background samples have been obtained using detailed Monte Carlo simula-
tions. The Monte Carlo event generator PYTHIA 6.4 [20] has been used for producing the W 0 and
rTC [21] samples. Fully leptonic decays W ! `n and Z ! `+`� with ` = e, µ are considered
in this analysis. The contribution of the leptonic decays of t’s from W or Z is considered as a
background.

The W 0 samples have been generated in steps of 100 GeV ranging from 300 to 900 GeV. For TC,
we concentrate on three LSTC mass points not excluded by other experiments which cover
a phase space region accessible with less than 5 fb�1. These masses along with the pro-
duction cross sections for signal (rTC/ aTC) convoluted with the decay branching fractions
to WZ and their subsequent leptonic decays are listed in Table 1. The implementation in
PYTHIA includes both the vector and axial-vector resonances, rTC and aTC respectively, with
M(aTC) = 1.1M(rTC). This helps to naturally suppress the electroweak parameter S, since the
first set of vector resonances (rTC) and the first set of axial-vector resonances (aTC) are nearly
degenerate. In addition, the TC parameters, MV (for techni-vectors) and MA (for aTC), were set
to be equal to M(rTC) and M(wTC), where M(wTC) is the mass of the wTC particle.

The relationship between M(rTC) and M(pTC) significantly affects the BR(rTC ! WZ). If
M(rTC) > 2M(pTC), the WZ branching ratio is reduced by approximately ten times, while the
WZ branching ratio approaches 100% if M(rTC) < M(pTC) + MW . For this study we assume
a parameter set used in the Les Houches study [21] (M(pTC) =

3
4 M(rTC)� 25 GeV) and also

investigate the dependence of the results on the relative values of the rTC and pTC masses.

Some of the background processes have been generated using PYTHIA, while the others have
been generated using the ALPGEN [22], MADGRAPH [23] and POWHEG [24] generators. These
backgrounds can be divided into physics and instrumental. The physics backgrounds include
ZZ production in which one of the leptons is either outside the detector acceptance or mis-
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3 Signal and Background Modeling

The signal and background samples have been obtained using detailed Monte Carlo simula-
tions. The Monte Carlo event generator PYTHIA 6.4 [20] has been used for producing the W 0 and
rTC [21] samples. Fully leptonic decays W ! `n and Z ! `+`� with ` = e, µ are considered
in this analysis. The contribution of the leptonic decays of t’s from W or Z is considered as a
background.

The W 0 samples have been generated in steps of 100 GeV ranging from 300 to 900 GeV. For TC,
we concentrate on three LSTC mass points not excluded by other experiments which cover
a phase space region accessible with less than 5 fb�1. These masses along with the pro-
duction cross sections for signal (rTC/ aTC) convoluted with the decay branching fractions
to WZ and their subsequent leptonic decays are listed in Table 1. The implementation in
PYTHIA includes both the vector and axial-vector resonances, rTC and aTC respectively, with
M(aTC) = 1.1M(rTC). This helps to naturally suppress the electroweak parameter S, since the
first set of vector resonances (rTC) and the first set of axial-vector resonances (aTC) are nearly
degenerate. In addition, the TC parameters, MV (for techni-vectors) and MA (for aTC), were set
to be equal to M(rTC) and M(wTC), where M(wTC) is the mass of the wTC particle.

The relationship between M(rTC) and M(pTC) significantly affects the BR(rTC ! WZ). If
M(rTC) > 2M(pTC), the WZ branching ratio is reduced by approximately ten times, while the
WZ branching ratio approaches 100% if M(rTC) < M(pTC) + MW . For this study we assume
a parameter set used in the Les Houches study [21] (M(pTC) =

3
4 M(rTC)� 25 GeV) and also

investigate the dependence of the results on the relative values of the rTC and pTC masses.

Some of the background processes have been generated using PYTHIA, while the others have
been generated using the ALPGEN [22], MADGRAPH [23] and POWHEG [24] generators. These
backgrounds can be divided into physics and instrumental. The physics backgrounds include
ZZ production in which one of the leptons is either outside the detector acceptance or mis-
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Figure 1: Dark matter production in association with a single jet in a hadron collider.

3.1. Comparing Various Mono-Jet Analyses

Dark matter pair production through a diagram like figure 1 is one of the leading channels
for dark matter searches at hadron colliders [3, 4]. The signal would manifest itself as an excess
of jets plus missing energy (j + /ET ) events over the Standard Model background, which consists
mainly of (Z � ⇥⇥)+ j and (W � ⌅inv⇥)+ j final states. In the latter case the charged lepton ⌅ is
lost, as indicated by the superscript “inv”. Experimental studies of j + /ET final states have been
performed by CDF [22], CMS [23] and ATLAS [24, 25], mostly in the context of Extra Dimensions.

Our analysis will, for the most part, be based on the ATLAS search [25] which looked for mono-
jets in 1 fb�1 of data, although we will also compare to the earlier CMS analysis [23], which used
36 pb�1 of integrated luminosity. The ATLAS search contains three separate analyses based on
successively harder pT cuts, the major selection criteria from each analysis that we apply in our
analysis are given below.3

LowPT Selection requires /ET > 120 GeV, one jet with pT (j1) > 120 GeV, |�(j1)| < 2, and events
are vetoed if they contain a second jet with pT (j2) > 30 GeV and |�(j2)| < 4.5.

HighPT Selection requires /ET > 220 GeV, one jet with pT (j1) > 250 GeV, |�(j1)| < 2, and events
are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV or
�⇤(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

veryHighPT Selection requires /ET > 300 GeV, one jet with pT (j1) > 350 GeV, |�(j1)| < 2, and
events are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV
or �⇤(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

In all cases events are vetoed if they contain any hard leptons, defined for electrons as |�(e)| < 2.47
and pT (e) > 20 GeV and for muons as |�(µ)| < 2.4 and pT (µ) > 10 GeV.

The cuts used by CMS are similar to those of the LowPT ATLAS analysis. Mono-jet events
are selected by requiring /ET > 150 GeV and one jet with pT (j1) > 110 GeV and pseudo-rapidity
|�(j1)| < 2.4. A second jet with pT (j2) > 30 GeV is allowed if the azimuthal angle it forms with
the leading jet is �⇤(j1, j2) < 2.0 radians. Events with more than two jets with pT > 30 GeV are
vetoed, as are events containing charged leptons with pT > 10 GeV. The number of expected and
observed events in the various searches is shown in table I.

3 Both ATLAS and CMS impose additional isolation cuts, which we do not mimic in our analysis for simplicity and
since they would not have a large impact on our results.
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• CMS had a banner 2011!
• more than 40 new results sent to winter conferences:

Standard Model, B-physics, Top, Higgs, SUSY, Exotica
• Will 2012 be the year that the Standard Model finally breaks?

• Rule out SM Higgs?  Rule out SM Bs -> μμ?
• Incontrovertible proof of New Physics!

• Or, will the Standard Model triumph yet again?
• Discover SM Higgs!  Discover SM Bs -> μμ!
• Both Represent tremendous discoveries;

Cumulation of scientific thought from the previous century!
• Or, will will we...

• Discover Higgs & SUSY?
• A true renaissance!

• We are in the midst of an amazing time in science!  
• A cross-road, sure to change our understanding of nature in 

fundamental ways!
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• Important QCD Measurement
• Benchmark channel (& bkg) for Higgs search
• Simulation: ME+PS using MadGraph+Pythia
• Data unfolded to hadron-level

Z+bb

12 5 Result

lated using MCFM [21–23] similarly as in Ref. [3].

The cross section results are potentially sensitive to model-dependent variations of the b-jet
kinematics. In particular, this could affect the generator- to reconstructed-level efficiency fac-
tors. A study has been performed in which the ratio of events outside the generator-level
acceptance to inside this acceptance is varied in the MC signal sample. Realistic variations of
up to 10% on this ratio are found to have an impact on the cross section results at least an order
of magnitude below the given systematic uncertainties. Another study, in which all efficiency
factors are recalulated with the MC signal sample reweighted to match the pbb

T data distri-
bution as shown in Figure 5 gives variations in the cross section results at the level of 0.5%,
therefore the observed data/MC shape discrepancy does not have any appreciable impact on
the measurement.

The impact of the systematic uncertainties on the cross section is summarised in Table 5.

Table 5: Fractional uncertainties on the measured cross sections.
ee(%) µµ(%)

Correlated sources Z+1b Z+2b Z+1b Z+2b
b-jet purity 3.5 10.3 2.5 11.0
tt contribution 0.9 8.9 0.5 9.4
b-tagging efficiency 4.0 7.4 3.9 7.5
Jet energy scale 3.9 6.9 3.8 6.4
Luminosity 4.5 4.5 4.5 4.5
Emiss

T selection 0.3 2.4 0.3 2.4
Pileup 1.7 1.8 0.3 0.3
ZZ contribution 0.1 0.5 0.1 0.7
Jet energy resolution 0.1 0.2 0.1 0.1
Mistagging rate 0.02 0.08 0.02 0.07
Theory (via Al) 1.8 5.9 3.0 6.4
Uncorrelated sources Z+1b Z+2b Z+1b Z+2b
MC sample stat. 1.2 5.1 0.9 4.2
Dilepton selection 4.0 4.0 1.9 1.9
Statistical 2.4 10.0 1.8 8.2
Experimental systematic 9.1 18.9 7.7 18.8
Theoretical systematic 1.8 5.9 3.0 6.4

5 Result

The final cross section is obtained from the unfolded yields per multiplicity bin divided by the
integrated luminosity. The results are summarised in Table 6.

Table 6: Cross section for the production of Z in association with exactly 1 b jet and at least 2-b
jets, and the combination of the two (at least 1 b jet).

Multiplicity bin ee µµ
shadron(Z+1b,Z! ``)(pb) 3.25 ± 0.08 ± 0.29 ± 0.06 3.47 ± 0.06 ± 0.27 ± 0.11
shadron(Z+2b,Z! ``)(pb) 0.39 ± 0.04 ± 0.07 ± 0.02 0.36 ± 0.03 ± 0.07 ± 0.03
shadron(Z+b,Z! ``)(pb) 3.64 ± 0.09 ± 0.35 ± 0.08 3.83 ± 0.07 ± 0.31 ± 0.14
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Figure 8: Migration matrix used in the unfolding from reconstructed to hadron levels, for the
dielectron (left) and dimuon (right) selections.

4 Systematic uncertainties

The following sources of systematic uncertainties have been investigated:

• The b-tagging efficiency and the mistagging fraction: jet-pT dependent uncertain-
ties, in the range 3-8% for pT > 30 GeV and 12% for pT < 30 GeV are evaluated on
the b-tagging data/MC scale factors, as described in Ref. [4, 5]. The uncertainty on
the mistagging rate enters in the calculation of the MC event weight applied, and is
found to have a negligible impact. These uncertainties affect the b-tagging efficien-
cies calculated in Section 3.

• The b-jet purity and the estimations of tt and ZZ backgrounds: the systematic un-
certainties calculated in Section 2.2 are propagated to the cross section following the
formula in Equation 3.

• Jet energy scale and resolution: the uncertainty on the jet energy scale comes from
Ref. [15], and amount to between 3-5% depending on the pT and h of the jets. The
uncertainty on the jet energy resolution is taken to be 10%, after degrading the MC
resolution by 10% to match that measured in the data. Both affect the hadron-level
correction factors.

• Effect from pile-up: the reweighting procedure is varied, by varying by 0.6 interac-
tions the data distribution, and the effect propagated through the correction factors.
It affects mainly the lepton efficiency factors through the effect on the lepton isola-
tion requirements.

• Emiss
T selection: the Emiss

T requirement removes about 2.5% of the signal contribution,
evaluated from MC. The uncertainty on that contribution is taken to be 2%.

• MC statistics: whereas the MC statistics is sufficient for the 1-b jet bin, it leads to
several percent uncertainties for correction factors involving the 2-b jet bin.

• Luminosity: measured by CMS to be 4.5% [7].
• The dilepton selection: from the electron and muon efficiencies, as explained in Sec-

tion 2.
• Theory: the PDF and scale uncertainties on the lepton acceptance factors are calcu-
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Figure 7: Distributions of the secondary vertex mass of the leading (left) and subleading (right)
b jet, for the combined electron+muon sample. Overlaid is the two-dimensional template used
to describe the two observables, after a simultaneous likelihood fit of the bb event purity.

3 Efficiencies

In order to extract a cross section, the background-corrected yields obtained in Section 2.2 need
to be corrected for the efficiency of the dilepton+b-jet selection, the detector resolution effects,
and the acceptance of the leptons. The efficiency of the selection is factorized in two parts:
the b-tagging efficiency and the lepton selection efficiency. The correction for the detector res-
olution effects is equivalent to interpreting the results at the particle level rather than at the
reconstructed level. This correction is dominated by the jet energy resolution, and is hence
called hadron-level correction in the following.

Contrary to the inclusive Z+b cross section, where the respective proportions of events in the
1 and 2 or more b-jet bins are not measured, the Z+bb cross section depends on the migrations
between the 1-b to 2-b jet bins. Both b-tagging efficiency and jet energy resolution affect the
resulting b-hadron multiplicity. The corrections are hence performed as an unfolding of the
jet multiplicity distribution, from the reconstructed and selected events with exactly one, and
two or more b jets, to the hadron-level events with exactly one, and two or more b-hadron
jets. As only two bins are considered in this unfolding, referred to as the 1-b and 2-b jet bins
in the following, the results are factorised into four 2-by-2 matrices, by factorising the effects:
b-tagging efficiency, lepton efficiency, hadron-level correction, and lepton acceptance.

Only the matrices for b-tagging and hadron-level corrections have off-diagonal elements. This
leaves, in principle, 12 remaining factors to be calculated from the MC. As the background from
mistagging additional jets has already been removed (see Section 2.2), the migration from 1-b jet
to 2-b tagged jets is set to 0, leaving 11 remaining factors. One additional source of migration
comes from events without a b-jet in the hadron-level acceptance being reconstructed with
either one or two b-jets in the acceptance at reconstructed level. Such a migration would be
due to jet energy resolution effects, and these add three additional factors. These 14 factors
are obtained from the MC. The background-corrected data yields obtained in Section 2.2 are
used as input to the system. This way, the result becomes independent of the 1-b to 2-b jet ratio
predicted by the MC, but this ratio is rather measured in situ in the data.
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Figure 7: Distributions of the secondary vertex mass of the leading (left) and subleading (right)
b jet, for the combined electron+muon sample. Overlaid is the two-dimensional template used
to describe the two observables, after a simultaneous likelihood fit of the bb event purity.

3 Efficiencies

In order to extract a cross section, the background-corrected yields obtained in Section 2.2 need
to be corrected for the efficiency of the dilepton+b-jet selection, the detector resolution effects,
and the acceptance of the leptons. The efficiency of the selection is factorized in two parts:
the b-tagging efficiency and the lepton selection efficiency. The correction for the detector res-
olution effects is equivalent to interpreting the results at the particle level rather than at the
reconstructed level. This correction is dominated by the jet energy resolution, and is hence
called hadron-level correction in the following.

Contrary to the inclusive Z+b cross section, where the respective proportions of events in the
1 and 2 or more b-jet bins are not measured, the Z+bb cross section depends on the migrations
between the 1-b to 2-b jet bins. Both b-tagging efficiency and jet energy resolution affect the
resulting b-hadron multiplicity. The corrections are hence performed as an unfolding of the
jet multiplicity distribution, from the reconstructed and selected events with exactly one, and
two or more b jets, to the hadron-level events with exactly one, and two or more b-hadron
jets. As only two bins are considered in this unfolding, referred to as the 1-b and 2-b jet bins
in the following, the results are factorised into four 2-by-2 matrices, by factorising the effects:
b-tagging efficiency, lepton efficiency, hadron-level correction, and lepton acceptance.

Only the matrices for b-tagging and hadron-level corrections have off-diagonal elements. This
leaves, in principle, 12 remaining factors to be calculated from the MC. As the background from
mistagging additional jets has already been removed (see Section 2.2), the migration from 1-b jet
to 2-b tagged jets is set to 0, leaving 11 remaining factors. One additional source of migration
comes from events without a b-jet in the hadron-level acceptance being reconstructed with
either one or two b-jets in the acceptance at reconstructed level. Such a migration would be
due to jet energy resolution effects, and these add three additional factors. These 14 factors
are obtained from the MC. The background-corrected data yields obtained in Section 2.2 are
used as input to the system. This way, the result becomes independent of the 1-b to 2-b jet ratio
predicted by the MC, but this ratio is rather measured in situ in the data.

8 2 Reconstruction and selection

)2) (GeV/c-µ+µm(
60 70 80 90 100 110 120

Ev
en

ts
/2

 G
eV

0

10

20

30

40

50

60

70
Data 
DY+jets
tt

 -1 = 7 TeV, L = 2.1 fbs
CMS Preliminary

Dimuon sample

)2) (GeV/c-e+m(e
60 70 80 90 100 110 120

Ev
en

ts
/2

 G
eV

5

10

15

20

25

30

35

40
Data 
DY+jets
tt

 -1 = 7 TeV, L = 2.1 fbs
CMS Preliminary

Dielectron sample

Figure 6: Distributions of the dilepton invariant mass m(ll) for the dimuon (left) and dielectron
(right) samples. Overlaid are the templates for Drell-Yan and tt contributions, after fitting the
relative fractions.

by comparing with templates constructed from an independent MC sample, and by comparing
with the expectations from MC, which have all shown to give consistent results. A systematic
uncertainty of 4.5% is estimated from MC, for the fraction of events possibly originating from
other sources, namely Z + bc, cl, ll.

The expected ZZ yield is estimated from MC, using the cross section and uncertainty from the
CMS measurement [20] for the normalization. After selection, the expected contributions in the
muon and electron channels are respectively

Nµµ+bb
ZZ = 5.2 ± 0.10 (stat.) ± 0.18 (syst.); Nee+bb

ZZ = 3.0 ± 0.10 (stat.) ± 0.14 (syst.) (2)

The systematic uncertainty is dominated by the measurement uncertainty, while the statistical
uncertainty originates from the limited MC statistics.

Table 2: The estimates of the variables entering the signal yield estimate for the L = 2.1 fb�1

data sample, including systematic uncertainties.
Variable Parameter µµ + bb ee + bb
Z+bb yield NZ(ll)+bb 219 148
bb-purity fbb (83 ± 6)% (83 ± 6)%
tt fraction ftt (20 ± 5)% (17 ± 5)%
Diboson yield NZ(ll)Z(bb) 5.2 ± 0.2 3.0 ± 0.2

The signal yield can be estimated from the number of selected events (NZ(ll)+bb), the per-event
purity fbb, the tt contamination ftt, and expected ZZ yield (NZZ) as

Nsig
Z(ll)+bb = NZ(ll)+bb ⇥ ( fbb � ftt)� NZZ. (3)

Using the values from Table 2, the reconstructed signal yield is estimated to be Nsig
Z(µµ)+bb =

133 ± 21 and Nsig
Z(ee)+bb = 95 ± 15.
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5.1 Observation of (Z ! 4`) Decays 5

Table 2: Number of expected and observed events. The rate from the fit for the 4e final state
is not defined, since statistics in this individual channel is too small (two events) for a fit to
provide meaningful results.

Final state channels 4e 4µ 2e2µ 4`
Irreducible background (pp ! Zg⇤ ! 4`) 0.04 0.16 0.08 0.3 ± 0.03
Other reducible backgrounds 0.01 0.01 0.05 0.1 ± 0.13
Expected signal (pp ! Z ! 4`) 3.1 12.3 9.2 24.6 ± 2.2
Total expected (MC) 3.2 12.5 9.3 25.0 ± 2.2
Observed events 2 14 10 26
Rate from the fit of the observed mass distribution 13.6 9.7 25.4

Figure 2: Four-lepton mass distribution. The data are shown by points. The filled histograms
represent standard model expectations for pp ! Zg⇤/Z ! 4` (taken from simulation) and
for reducible backgrounds predicted using the data driven estimation method. The three final
states, 4e, 4µ, 2e2µ, are added together. The peak at m4` = mZ constitutes the first observation
of pp ! Z ! 4` decays.

5.3 Z ! 4` decays as a standard candle in the H ! ZZ ! 4` search. 7

at m4` = mZ is an order of magnitude larger than the expected number of events for the SM
Higgs boson with a mass mH anywhere in the remaining allowed range of 117.5–118.5 and
122.5–127.5 GeV [14, 15]. Therefore, the Z ! 4` peak can be used for a direct calibration of the
four-lepton mass scale, the four-lepton mass resolution, and the overall four-lepton reconstruc-
tion efficiency in a similar phase space to the Higgs boson four-lepton decays. Such a direct
calibration using the Z ! 4` peak will be complementary to the currently employed indirect
method of tag-and-probe making use of Z ! 2` events, with the benefits that Z ! 4` has:
similar kinematics, a final state with 4` and the same proportion between electrons and muons.

Figure 3 (right) shows the fit of the four-lepton mass distribution for the observed events. The
background shape is taken from pp ! ZZ ! 4` simulation, with the overall normalization
floating in the fit (differences in shape between the reducible and irreducible backgrounds are
ignored due to the small contribution of the former). The signal is a convolution of the Breit-
Wigner and Crystal Ball functions. The central value and width of the Breit-Wigner function
are fixed at the Z boson mass mZ and width GZ [7]. The Crystal Ball parameters are free in the
fit.

One can see that the offset of the peak is 0.4±0.5 GeV, or, in relative units, 0.4±0.5%. These
numbers can be used to constrain the possible systematic errors of the four-lepton mass scale.
With the current data, we can state that the average four-lepton mass scale does not show any
significant bias within the 0.5% statistical uncertainty.

The Crystal Ball width (sigma of the Gaussian core) returned by the fit is 1.3±0.6 GeV. This
is consistent with the MC-based expectations of 1% for 4µ and 1.4% for 2e2µ in this low mass
range. There are only two 4e events, therefore their mass resolution cannot be yet constrained
with the current luminosity. With the current data, we can measure the average four-lepton
mass resolution with about 0.6/1.3 = 46% statistical uncertainty.

Figure 3: (Left) Four lepton mass distribution in simulation for pp ! 4`, without the Higgs
boson, and pp ! H ! ZZ ! 4` for a Higgs boson mass mH = 120 GeV stacked on top. The
Higgs boson signal is scaled up by a factor of 10. (Right) Four-lepton mass distribution. Data
are shown by points. The three final states, 4e, 4µ, and 2e2µ, are added together. The solid line
represents a simultaneous fit for the background and Z boson peak (see text for details).
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Figure 4: Four-lepton mass distribution for pp ! 4` process in the linear (left) and log (right)
y-axis scales.

14 D Typical Event Display

D Typical Event Display
An event display of a typical event from the 26 in the peak is shown in Fig. 5. One can see the
distinct kinematic topology expected for the Z ! 4` decays where one lepton recoils back-to-
back against the system of three close-by leptons.

Figure 5: Event display of a typical event from the peak at the Z boson mass.5.1 Observation of (Z ! 4`) Decays 5

Table 2: Number of expected and observed events. The rate from the fit for the 4e final state
is not defined, since statistics in this individual channel is too small (two events) for a fit to
provide meaningful results.

Final state channels 4e 4µ 2e2µ 4`
Irreducible background (pp ! Zg⇤ ! 4`) 0.04 0.16 0.08 0.3 ± 0.03
Other reducible backgrounds 0.01 0.01 0.05 0.1 ± 0.13
Expected signal (pp ! Z ! 4`) 3.1 12.3 9.2 24.6 ± 2.2
Total expected (MC) 3.2 12.5 9.3 25.0 ± 2.2
Observed events 2 14 10 26
Rate from the fit of the observed mass distribution 13.6 9.7 25.4

Figure 2: Four-lepton mass distribution. The data are shown by points. The filled histograms
represent standard model expectations for pp ! Zg⇤/Z ! 4` (taken from simulation) and
for reducible backgrounds predicted using the data driven estimation method. The three final
states, 4e, 4µ, 2e2µ, are added together. The peak at m4` = mZ constitutes the first observation
of pp ! Z ! 4` decays.
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